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Spatial structure and time evolution of the Weibel instability
in collisionless inhomogeneous plasmas
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The magnetic field generated in an initially unmagnetized and anisotropic inhomogeneous plasma by the
development of the Weibel instability is strongly nonuniform. For the case of a plasma where the anisotropy
arises from two~relativistic! counterstreaming electron beams it is shown, both analytically and numerically,
that this instability develops a spatial ‘‘resonant’’-type singularity. The largest magnetic field is generated
around this singularity and has opposite polarities. In the case of one-dimensional~1D! perturbations, a current
layer is formed very rapidly at the resonance position, almost independently of the characteristic scale of the
initial perturbation. In 2D, numerical simulations show that a chain of current vortices is formed.
@S1063-651X~97!10606-7#

PACS number~s!: 52.35.Qz, 52.40.Nk, 52.60.1h, 52.65.Kj
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I. INTRODUCTION

The Weibel instability@1–6# is an efficient mechanism o
magnetic field generation in anisotropic plasmas. This in
bility also occurs in cold plasmas when the role of the a
isotropy is played by two electron streams propagating
opposite directions. In this latter case, the physical mec
nism which drives the instability can be described as follow
When the electric currents carried by the electron streams
displaced, one with respect to the other, by a transve
disturbance, the repulsion of the two oppositely directed c
rents reinforces the initial displacement. As a result, a lar
and larger magnetic field is produced as time increases.
linear evolution of this electron instability and its nonline
phase, before nonlinearities become so strong that they
to self-intersection of the orbits of the electrons in ea
stream, can be described within the framework of a sys
of cold ~relativistic! two-electron-fluid equations. If the tim
scales involved are sufficiently short, i.e., if the modes gr
on a fast electron time scale, ions can be taken to be at
If the two electron components were treated as a single fl
and charge separation leading to electrostatic perturbat
were excluded, these equations would reduce to the
known electron-magnetohydrodynamics~EMHD! equations
@7#.

The Weibel instability has been invoked in order to e
plain the generation of a magnetic field wake observed
particle in cell ~PIC! simulations of the interaction of ul
trashort and ultraintense laser pulses with an underde
plasma@8–10#. In this case the onset of the Weibel instab
ity is related to the fast electron streams produced near
rear part of the laser pulse and behind it by the breaking
the Langmuir waves produced by the laser pulse. Due to
plasma quasineutrality, the average current of these ener
electrons must be canceled by an opposite current carrie
electrons of the bulk plasma component. As mention
561063-651X/97/56~1!/963~7!/$10.00
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above, these oppositely directed currents repel each o
making the distribution of the current density in the plasm
inhomogeneous in the transverse direction and producin
quasistationary magnetic field.

In the astrophysical context, the ion Weibel instabili
driven by a cross-field current has been proposed as a me
nism for rapid current disruption phenomena observed in
magnetotail@11,12#. This work is motivated by observationa
evidence of substorm onset in regions where strong magn
fields normal to the current sheet stabilize most of the ins
bilities generally invoked to explain strong energetic even
The ion Weibel instability is a very promising candidate f
substorm initiation in such conditions@13#.

The linear dispersion relation of the Weibel instability
two counter-streaming relativistic electron beams in a hom
geneous plasma, for perturbations with wave vectors perp
dicular to the stream direction, was presented in@14# to-
gether with an analysis of the nonlinear development of
instability in different wavelength regimes.

In the present paper we address the problem of the sp
and time development~mainly in the linear phase! of the
Weibel instability in an inhomogeneous plasma where
electron streams are spatially nonuniform and the plas
density may vary in the direction perpendicular to t
streams, as is the case, e.g., in the interaction of a laser p
with a plasma mentioned above. In this inhomogeneous c
the electron equations develop a spatial singularity aro
which the magnetic field generated by the instability b
comes more and more concentrated. In the simple cas
one-dimensional perturbations in a uniform density plas
with two symmetric~equal densities and opposite velocitie!
nonuniform electron counterstreams, this ‘‘Weibel singul
ity’’ occurs at the position where twice the growth rate~nor-
malized on the plasma frequency of one of the elect
streams! matches the square of the local value of the elect
velocity ~normalized on the speed of light!. As a result, a
963 © 1997 The American Physical Society
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964 56F. CALIFANO, F. PEGORARO, AND S. V. BULANOV
mode strongly localized around the singularity develo
from any initial perturbation at a rate which depends on
characteristic gradient of the electron velocities. The pola
of the magnetic field is opposite on the two sides of
singularity. A similar structure is also found to occur f
two-dimensional perturbations which develop a localiz
chain of oppositely polarized magnetic domains. The cha
teristic spatial scale of the field produced by these locali
instabilities is of the order of the electron skin depth. Th
can be understood by noting that this scale correspond
the value of the wave numberk for which the linear growth
rate becomes largest and almost independent ofk.

This paper is organized as follows. In Sec. II, we intr
duce the cold~relativistic! two-electron-fluid equations an
present the main features of the Weibel instability in a h
mogeneous plasma by considering perturbations forming
arbitrary angle with the stream direction. In Sec. III we stu
the ‘‘resonant’’ behavior of the perturbation which arises in
plasma with nonuniform equilibrium electron velocities. A
an illustration, we derive the spatial behavior around
resonant position of perturbations with given growth ra
For the sake of simplicity we consider perturbations t
propagate perpendicularly to the two counterstreaming n
uniform electron streams and assume that these stream
symmetric and have nonrelativistic velocities. In additio
we take the plasma density to be homogeneous. In Sec
we consider an initial value problem and study the time e
lution of an initially given perturbation. We follow the
growth of the perturbation amplitude, its localization, and
formation of increasingly small spatial scales numerica
both for nonrelativistic and for relativistic electron stream
We analyze the case of one-dimensional as well as t
dimensional~2D! perturbations. In the latter case 2D vortic
are formed in the current density accompanied by fine spa
structures in the density of the two electron beams. A b
discussion of the code used for the numerical simulation
given in the Appendix.

II. THE WEIBEL INSTABILITY

Assuming the ions to be at rest and to provide a unifo
neutralizing background, we study the relativistic dynam
of the two electron counterstreaming populations in the fl
approximation by means of the following set of~dimension-
less! equations:

]pa
]t

52va•¹pa2~E1va3B!, ~1!

]na
]t

5¹• ja , ~2!

]B

]t
52¹3E, ~3!

]E

]t
5¹3B2(

a
ja , ~4!

¹•E52(
a

na , ~5!
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va5
pa

~11pa
2!1/2

, ja52nava , a51,2 ~6!

where all the quantities are normalized on a characteri
density n̄ , on the speed of lightc, and on the plasma fre
quencyv̄5(4p n̄e2/m)1/2. Notice that Eq.~5! is equivalent
to a linear combination of Eqs.~2! and ~4!.

A. Homogeneous plasma

We can study the behavior of infinitesimal perturbatio
by linearizing the system of Eqs.~1!–~4!. We consider a
homogeneous plasma with velocitiesv0,a such that the net
current density is zero,

(
a

n0,av0,a50. ~7!

As initially the plasma is nonmagnetized, the direction of t
electron streams, parallel to thex axis of a Cartesian refer
ence frame, is the only preferential direction. Without loss
generality, the evolution of any perturbation with wave ve
tor k can therefore be studied in an (x,y) plane chosen so
that the wave vectork5(kx ,ky) lies in the plane itself. As is
known, the Weibel instability generates a magnetic fieldBz
perpendicular to the plane (x,y). Then, assuming all per
turbed quantities in the form

F~x,y,t !5 f eı~kxx1kyy2vt !, ~8!

and definingVa5v2kxv0,a andGa5(12v0,a
2 )21/2, the dis-

persion relation reads

~12V2
22!@kx

2~11V4
22!2v2~12V1

22!22vkxV3
22#

1ky
2@~12V1

22!~11V4
22!1V3

24#50, ~9!

where

V1
225(

a

n0,a
GaVa

2 , V2
225(

a

n0,a
Ga
3Va

2 , ~10!

V3
225(

a

n0,av0,a
GaVa

2 , V4
225(

a

n0,av0,a
2

GaVa
2 .

Notice that, because of Eq.~7!,

kx
2~11V4

22!2v2~12V1
22!22vkxV3

22

5kx
22v21(

a

n0,a
Ga

. ~11!

When the perturbation propagates parallel to the mean e
tron streams, i.e.,ky50, the electrostatic two-stream insta
bility amplifies the perturbed electric fieldEx with a growth
rate obtained by solving the equation 12V2

2250. No mag-
netic field is produced in this case. In the opposite lim
kx50, the dispersion relation reduces to~see@14#, and ref-
erences therein!
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v2~12V2
22!~12V1

22!

2ky
2@~12V1

22!~11V4
22!1V3

24#50. ~12!

Equation ~12! contains two oscillatory solutions and on
purely growing electromagnetic instability~1D Weibel insta-
bility ! which amplifies any initial small magnetic perturb
tion.

In Fig. 1 ~continuous lines! we plot the growth rate of the
1D Weibel instability versus the wave numberky for three
symmetric nonrelativistic cases (v0,152v0,250.1, 0.2, 0.5,
continuous lines! and for three symmetric relativistic case
(v0,152v0,250.9, 0.99, 0.999, dashed lines!. The stars
represent the growth rates of the ‘‘localized mode’’ for
plasma with inhomogeneous electron streams~see Sec. IV!.
This figure shows that, in the nonrelativistic regime~continu-
ous lines!, the growth rate increases linearly withky for
small values ofky and saturates atky.1. In the relativistic
limit ~dashed lines! the slope of the curves is more and mo
reduced and, most important, saturation occurs at lower
lower values@i.e., ky'(Ga)

21/2#, as consistent with the rela
tivistic increase of the effective electron skin depth. For
same reason, the value of the maximum growth rate is
reduced in the strong relativistic case~curve 6!.

The saturation of the Weibel instability with respect to t
wave numberky has important implications for the analys
of the time evolution of the instability in an inhomogeneo
equilibrium that will be presented in the following section
In the inhomogeneous case the spatial scale of the pertu
tions is formed dynamically and we may thus expect that
inhomogeneous growth rate will not increase significan
after the perturbation has reached a typical scale corresp
ing, in the nonrelativistic case, tok.1.

In the 2D case with intermediate propagation angles,
for nonvanishing values of bothkx andky , the Weibel insta-
bility and the two-stream instability are coupled in a sing
branch. As is well known, the 1D two-stream instability h

FIG. 1. Growth rate of the 1D Weibel instability versus th
wave numberky for a homogeneous plasma. Curves 1,2,3~continu-
ous lines! refer to three nonrelativistic symmetric cas
(v0,152v0,25v0) with stream velocitiesv050.1,0.2,0.5. Curves
4,5,6 refer to three relativistic symmetric cases w
v050.9,0.99,0.999. The stars are the growth rates of the We
instability in an inhomogeneous plasma~see Sec. IV! for five dif-
ferent wave numbers,ky50.01,0.2,1,2,5. In this figure and in th
following ones dimensionless units are used.
nd

e
so

.
a-
e
y
d-

.,

a cutoff (kx
max) beyond which the mode is stabilized. Th

cutoff depends on the stream velocity and, in 2D, on
modulus of the wave vector (kx

21ky
2)1/2, as shown in Fig. 2

by the continuous lines which represent the growth rate
the 2D instability versus the anglekx /ky . In this figure the
first two frames~A! and~B! belong to a nonrelativistic sym
metric case (v0,152v0,250.1), while the last two~C! and
~D! belong to a relativistic symmetric cas
(v0,152v0,250.95); here Eq.~9! is solved on a circle of
fixed radiuskx

21ky
25 const. The cutoff of the coupled ‘‘Wei-

bel two-stream mode’’ is seen in all frames apart from t
case of low stream velocity and small values of the modu
of the wave vector@frame ~A!#. Note that in the relativistic
regime this cutoff occurs at lower values ofkx than in the
nonrelativistic case. In Fig. 2 we also show the three sta
branches of Eq.~9! corresponding to transverse@electromag-
netic ~e.m.!# and longitudinal~Langmuir! plasma waves.

III. NONHOMOGENEOUS PLASMA

In order to model the conditions where the electr
streams are excited in the central region of the plasma,
assume that the inhomogeneity can be described as on
mensional along they axis and write

pa5~p0,a1pa,x ,pa,y,0!, na5n0,a1na , ~13!

E5~Ex ,Ey ,0!, B5~0,0,Bz!, ~14!

wherep0,a(y) andn0,a(y) are zero order~equilibrium! quan-
tities such that, in agreement with Eq.~7!, the total current
(aj 0,a(y)50. For the sake of simplicity, in this section w
assume equal and homogeneous mean electron density
tributions

n0,15n0,251, v0,1~y!52v0,2~y!. ~15!

el

FIG. 2. Growth rate of the 2D instability~continuous lines! ver-
suskx /ky in a homogeneous plasma and frequencies of the tra
verse e.m. and longitudinal Langmuir plasma waves~long and
small dashed lines, respectively!. The new mode of the 2D disper
sion relation is shown by dotted lines and the stable continuatio
the 2D instability by a dotted-dashed line@frames~B!, ~C!, ~D!#.
The first two frames~A! and ~B! belong to a nonrelativistic sym
metric case,v050.1 and the last two~C! and ~D! to a relativistic
symmetric case,v050.95.
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966 56F. CALIFANO, F. PEGORARO, AND S. V. BULANOV
In this symmetric limit they component of the electric field
vanishes.

A. Local analysis

The occurrence of a singularity in the spatial structure
the Weibel instability in the case of inhomogeneous stre
velocities is best seen by taking at first one-dimensional p
turbations with given growth rateg[2 iv of the form

F~y,t !5 f ~y!egt. ~16!

Then, the linearized system of Eqs.~1!–~4! in the nonrela-
tivistic limit can be cast in a second order differential equ
tion for the inductive electric fieldEx which, e.g., in the
nonrelativistic limit, reads

]

]yH @2v0
2~y!2g2#

]

]y
ExJ 1g2~g212!Ex50, ~17!

wherev0(y)5v0,1(y). If g,gmax, wheregmax is the maxi-
mum growth rate computed for a uniform plasma with t
largest value ofv0(y), the coefficient of the second orde
derivative vanishes for purely growing modes and a lo
Frobenius analysis@15# of Eq. ~17! shows that the solution is
singular at the pointȳ where 2v0( ȳ )

25g2. In the neighbor-
hood of ȳ we find

Ex; lnuy2 ȳ u, ~18!

which leads to

Bz;~y2 ȳ !21. ~19!

The logarithmic singularity inEx is mathematically analo
gous to the one which is encountered at the Alfve´n resonance
in the case of shear-Alfve´n waves propagating in a weakl
inhomogeneous plasma~see, e.g., Refs.@16,17# and, for gen-
eral oscillations in inhomogeneous flows@18#!. The singular-
ity in the spatial dependence ofBz indicates that the mag
netic field generated by the Weibel instability in
nonuniform plasma is strongly inhomogeneous, and that
localized in the neighborhood of the resonant point. Arou
this point the field reverses its polarity, which corresponds
the formation of a current sheet.

IV. TIME EVOLVING SIMULATIONS

We investigate the occurrence, the location, and the e
lution of ‘‘resonant’’ modes by numerical integration of th
normalized two-electron-fluid equations~1!–~4!. We model
the inhomogeneous equilibrium electron velocity as

v0,1~y!5v`1
d

2
@11tanh~y/ l !#ex ,

v0,252v0,1, ~20!

where 1/l is the dimensionless equilibrium gradient para
eter. Then,v0,1(y→2`)5v` , v0,1(y→1`)5v`1d, and
we integrate Eqs. ~1!–~4! in the interval
y5@2Ly ,Ly#, Ly / l570, with the following boundary con
ditions for all the variables:
f
m
r-

-

l

is
d
o

o-

-

]

]y
50 at y56Ly . ~21!

The numerical initial value code is described in the A
pendix; it has been optimized for massively parallel comp
ers and runs presently on the Connection Machine 200 of
Scuola Normale of Pisa and on the Connection Machine 5
the Institut de Physique du Globe of Paris.

At the time t50 with v`50.25 andd50.25 @see Eq.
~20!#, we perturb the equilibrium fields with a very sma
disturbance on each of the physical quantities. The ini
perturbations are of the formf j (y,t50)51026exp@2y2/
s]sin(k0y1fj), wheref j is a random phase ands580/l .
These perturbations decay rapidly foruyu.9/l 1/2 well outside
the inhomogeneous region. We define the mean amplitud
the perturbation as

^ f &~ t !5F 1

2Ly
E

2Ly

Ly
f ~y,t !2 dyG1/2. ~22!

We have performed a number of simulations for differe
values of the wave vector of the initial perturbatio
0.01<k0<5 and of the inhomogeneity scale leng
0.1, l,10.

It is worth stressing thatk0.1 corresponds approximatel
to the typical spatial scale for which the growth rate of t
corresponding homogeneous mode withv0,15max„v0,1(y)…
saturates at its maximum value~see Fig. 1!. We define this
scale asksat

hom.
In Fig. 3 we plot the mean amplitude of the magnetic fie

for different values ofk0 (d50.25, l51, and v`50.25)
and in Fig. 4 we show the spatial behavior of the magne
field for k050.2 at different times. Nonlinear effects sta
coming into play att.50. In Fig. 5 we plot the magnetic
field versusy for the same run of Fig. 4 at timet50 ~dashed
line! and overplot the magnetic field at later times eve
Dt50.5 ~continuous lines!. Each curve is normalized to it
maximum absolute value.

For ‘‘small’’ initial wave numbers,k0,1, the most inter-
esting result is the dynamical formation of a strong peak
the magnetic fieldBz in the central inhomogeneous regio

FIG. 3. Mean amplitude of the magnetic field^Bz& versus time
with v`50.25 andd50.25 for five different values of the initia
wave number,k050.01,0.2,1,2,5. All these curves refer to 1D no
relativistic inhomogeneous simulations.
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near y50 where the equilibrium gradients are maximu
~see Fig. 4!. This process develops on a characteristic~di-
mensionless! time tpk;5 which depends on the value of th
inhomogeneity scale lengthl , while it is independent of the
particular choice ofk0. This characteristic time is muc
shorter than the inverse of the growth rate correspondin
the initial wave number of the perturbation.

Eventually the typical scale length of the perturbation b
comes ofO(1) ~i.e., k;ksat

hom) and the small scale formatio
process rapidly slows down. Then the mean amplitu
^Bz&(t) grows according to a time dependence that is v
close to an exponential one~see Fig. 3!. The estimated
growth rate g @obtained by an exponential best fit o
^Bz(t)&,t.tpk# is independent ofk0, as shown in Fig. 1
~stars!. The resulting ‘‘resonant’’ mode does not propaga
significantly, as shown in Fig. 5, so that we can assume
the frequency of the mode is small or zero. The peak
Bz(y,t) is located near the point where 2v0

22g250, as ex-
pected from the local analysis of Eq.~17!.

After the initial rapid generation of the peak (tpk;5), the
small scale formation process slows down, but continues

FIG. 4. Dependence of the magnetic fieldBz on y in a nonrel-
ativistic case~corresponding to curve 2 of Fig. 3! at different times,
t50,7,25,40. The values of the parameters a
k050.2, v`50.25, d50.25.

FIG. 5. Evolution of the dependence of the magnetic fieldBz on
y in the same case as in Fig. 4 fromt50 to t550 showing the
absence of propagation. The dashed line corresponds to the i
conditionBz(t50). Each curve is normalized to its maximum a
solute value.
to

-

e
y

at
f

t a

finite rate. This result is not surprising because of the lack
a physical dissipation mechanism in the adopted equati
moreover, the numerical dissipation of our numerical sche
is negligible until the typical spatial scale of the perturbati
becomes comparable with the grid spacing. This is far fr
being the case in our simulations.

For larger values of the wave number (k0>1) our nu-
merical results show that the small scale formation proces
less evident since the spatial scale of the initial perturba
is of the same order or even smaller than the scale whic
reached by the resonance during the initial ‘‘fast’’ proce
(t,tpk) observed whenk0,1. Thus, whenk>ksat

hom, the sin-
gularity does not play a significant role in this linear pha
and the mode evolves more or less as in the homogen
case.

The scalel of mean gradient of the electron streams, s
Eq. ~20!, controls the characteristic time of the fast initi
small scale formation. For 0.01<k0<0.2, v`50.25, and
d50.25 we made a number of runs withl50.1, 1, 10. The
results of these simulations can be summarized as follo
The characteristic time of small scale formation~pinching
process! depends on the initial inhomogeneity of the electr
streams astpinch5t0l

1/2; on the other hand, the characterist
spatial scale reached by the system,k;ksat

hom, is independent
of l and, as observed for a fixed value of the inhomogene
scale (l51), independent ofk0. Similar results on the for-
mation and structure of the resonant modes have been
tained for nonsymmetric electron streams.

In order to study the resonant Weibel instability in th
relativistic regime, we have performed a number of ru
which show the same qualitative behavior observed in
nonrelativistic regime. In Fig. 6, as an example, we show
formation of the resonance by plotting the magnetic fie
versusy at different times. The parameters used in this r
are k050.2, v`50.749, d50.25, and the growth rate i
g50.65.

The formation of a Weibel resonance is also evident
2D modes which lead to the formation of a chain of opp
sitely polarized magnetic domains and to current density v
tices. This is shown in Figs. 7–9. In Fig. 7 we show t
shaded contours of the magnetic field at four tim
t50,7,25,40. Whiter and darker regions correspond to lar
values of the magnetic field with opposite polarity; in th

:

ial

FIG. 6. Dependence of the magnetic fieldBz on y in a relativ-
istic 1D case at different times,t50,5,7,35. The values of the pa
rameters arek050.2, d50.25, v`50.749.
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968 56F. CALIFANO, F. PEGORARO, AND S. V. BULANOV
first frame, white lines are the contour lines of the initia
inhomogeneous velocity@see Eq.~20!#. Notice that they
interval in this figure~and in Figs. 8 and 9! is much narrower
than in the 1D simulations, Figs. 4–6. In Fig. 7 we note tha
the characteristicy length of the magnetic field generated by
the pinching process in the inhomogeneous region is of th
same order of that observed in 1D simulations. In Fig. 8 w
show the shaded contours of~A! Ex and ~B! Ey and of the
densities of the two electron populations, frames~C! and~D!,
at t527. It is worth noticing that in Fig. 8 the densities of the
two electron streams form narrow spatial structures~filamen-
tation! but, at this stage, their velocities do not develop vor
tices that are only seen in their weighted sum~i.e., in the

FIG. 7. Shaded contours of the magnetic fieldBz for the 2D
instability in a plasma with inhomogeneous nonrelativistic symme
ric electron streams at four times,t50,15,25,27. The values of the
parameters arekx5ky51, k050.2, d50.25, v`50.25. Darker
regions correspond to increasingly positive values and whiter r
gions to increasingly negative values of the magnetic field. In th
first frame white lines are the contour lines of the initial inhomoge
neous velocity stream.

FIG. 8. Shaded contours att527 of the electric field compo-
nentsEx and Ey @frames ~A! and ~B!# and of the two electron
densitiesn1 andn2 @frames~C! and ~D!#. Parameters are the same
as in Fig. 7.
l

t

e
e

-

current density!. The current vortices att525 are shown in
Fig. 9 ~white arrows! together with the shaded contour ma
netic field ~same colors of Fig. 7!.

V. CONCLUSIONS

We have performed a linear analysis of the 1D and
spatial structure and time evolution of the Weibel instabil
in a plasma with nonuniform counterstreaming electr
streams. We have found, both analytically and numerica
that this instability develops a resonance-type spatial st
ture and that the generated magnetic field is highly locali
and reverses its polarity at the resonant position. We h
shown that the resonance occurs roughly around the p
where the gradient of the stream velocity is largest. In
case of 1D perturbations, a current layer is formed very r
idly at the resonance position, almost independently of
characteristic scale of the initial perturbation. In 2D a cha
of current vortices is formed. The spatial scale of the m
netic field continues to decrease until nonlinear effe
and/or three-dimensional effects leading to magnetic line
connection induced by electron inertia@19#, both not in-
cluded in the present analysis, become dominant. Magn
reconnection can be expected to play an important role in
evolution of theX points that are produced by the 2D inst
bility. A vivid example of a magneticX point is indeed
shown in Fig. 9.
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APPENDIX

The numerical code directly integrates Eqs.~1!–~4!. It
advances in time with the explicit algorithmADAMS BASH-

FORD III with fixed time stepdt and an accuracy;O(dt3).

t-

e-
e
-

FIG. 9. Enlarged representation of the contours of the magn
field Bz at t525 with the same colors as in Fig. 7. The arrow
represent the direction of the electron current density.
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DefiningRl
n , l51, . . . ,4 theright hand side of each o

the equations~1!–~4! at the time n and assuming tha
Rl
n , Rl

n21 , Rl
n22 are known, the algorithm calculates th

fields at the new time as follows:

H l
n115H l

n1dtF2312Rl
n2

4

3
Rl
n211

5

12
Rl
n22G , ~A1!

H15pa , H25na , H35E, H45Bz . ~A2!

To calculate the spatial derivatives, in thex direction we
use fast Fourier transforms with periodic boundary con
tions. In the inhomogeneousy direction we use a rather dif
ferent technique described as follows. First of all, it is
particular importance that during the simulation the bou
ary conditions do not influence significantly the evolution
the instability, and that the inhomogeneous region (uyu<5)
where strong gradients are generated must be ‘‘well
solved.’’ Therefore we make use of a nonregular~physical!
grid on an interval much larger than all the characteris
lengths of the system with an increasing density of g
points in the central region. The physical nonuniformy mesh
is transformed into an equispaced numericals mesh accord-
ing to
er

B

.

.

i-

f
-
f

-

c

y~s!5
s

g
2a• tanhS sb D . ~A3!

On the numerical equispaced meshs the derivatives are cal
culated using compact finite differences~see@20#, and refer-
ences therein! the computational cost of which is larger tha
that of classical finite differences; but these differences al
one to obtain an accurate resolution of a wide range of s
tial scales~not far from spectral methods! while keeping the
flexibility of all finite difference methods for nonperiodi
situations. In our code, we use the eighth order pentadiag
scheme with an accuracy

e5
16

9!
ds8

d9f

ds9
. ~A4!

Near the boundaries, at the pointsi52 and i5N21, the
scheme is reduced to a tridiagonal one, always on an eq
paced centered mesh, with an accuracye;ds4. At the
boundaries in the pointsi51,N we directly introduce the
boundary conditions, Eq.~21!.
g,

o,

l
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