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The magnetic field generated in an initially unmagnetized and anisotropic inhomogeneous plasma by the
development of the Weibel instability is strongly nonuniform. For the case of a plasma where the anisotropy
arises from twa(relativistic counterstreaming electron beams it is shown, both analytically and numerically,
that this instability develops a spatial “resonant”’-type singularity. The largest magnetic field is generated
around this singularity and has opposite polarities. In the case of one-dimendibhalerturbations, a current
layer is formed very rapidly at the resonance position, almost independently of the characteristic scale of the
initial perturbation. In 2D, numerical simulations show that a chain of current vortices is formed.
[S1063-651%97)10606-1

PACS numbes): 52.35.Qz, 52.40.Nk, 52.66h, 52.65.K]

[. INTRODUCTION above, these oppositely directed currents repel each other,
making the distribution of the current density in the plasma
The Weibel instabilityf 1-6] is an efficient mechanism of inhomogeneous in the transverse direction and producing a
magnetic field generation in anisotropic plasmas. This instaguasistationary magnetic field.
bility also occurs in cold plasmas when the role of the an- In the astrophysical context, the ion Weibel instability
isotropy is played by two electron streams propagating irdriven by a cross-field current has been proposed as a mecha-
opposite directions. In this latter case, the physical mechaaism for rapid current disruption phenomena observed in the
nism which drives the instability can be described as followsmagnetotai[11,12. This work is motivated by observational
When the electric currents carried by the electron streams amvidence of substorm onset in regions where strong magnetic
displaced, one with respect to the other, by a transversdields normal to the current sheet stabilize most of the insta-
disturbance, the repulsion of the two oppositely directed curbilities generally invoked to explain strong energetic events.
rents reinforces the initial displacement. As a result, a largefhe ion Weibel instability is a very promising candidate for
and larger magnetic field is produced as time increases. Th&ibstorm initiation in such conditiorj43].
linear evolution of this electron instability and its nonlinear  The linear dispersion relation of the Weibel instability of
phase, before nonlinearities become so strong that they ledadio counter-streaming relativistic electron beams in a homo-
to self-intersection of the orbits of the electrons in eachgeneous plasma, for perturbations with wave vectors perpen-
stream, can be described within the framework of a systendicular to the stream direction, was presented 4] to-
of cold (relativistic) two-electron-fluid equations. If the time gether with an analysis of the nonlinear development of the
scales involved are sufficiently short, i.e., if the modes growinstability in different wavelength regimes.
on a fast electron time scale, ions can be taken to be at rest. In the present paper we address the problem of the space
If the two electron components were treated as a single fluidnd time developmentmainly in the linear phageof the
and charge separation leading to electrostatic perturbation&/eibel instability in an inhomogeneous plasma where the
were excluded, these equations would reduce to the wedlectron streams are spatially nonuniform and the plasma
known electron-magnetohydrodynami@&MHD) equations density may vary in the direction perpendicular to the
[7]. streams, as is the case, e.g., in the interaction of a laser pulse
The Weibel instability has been invoked in order to ex-with a plasma mentioned above. In this inhomogeneous case,
plain the generation of a magnetic field wake observed irthe electron equations develop a spatial singularity around
particle in cell (PIC) simulations of the interaction of ul- which the magnetic field generated by the instability be-
trashort and ultraintense laser pulses with an underdensmmes more and more concentrated. In the simple case of
plasma[8-10]. In this case the onset of the Weibel instabil- one-dimensional perturbations in a uniform density plasma
ity is related to the fast electron streams produced near theith two symmetric(equal densities and opposite velocifies
rear part of the laser pulse and behind it by the breaking ohonuniform electron counterstreams, this “Weibel singular-
the Langmuir waves produced by the laser pulse. Due to thigy” occurs at the position where twice the growth rdter-
plasma quasineutrality, the average current of these energeticalized on the plasma frequency of one of the electron
electrons must be canceled by an opposite current carried tstreamgmatches the square of the local value of the electron
electrons of the bulk plasma component. As mentioned/elocity (normalized on the speed of lightAs a result, a

1063-651X/97/561)/9637)/$10.00 56 963 © 1997 The American Physical Society



964 F. CALIFANO, F. PEGORARO, AND S. V. BULANOV 56

mode strongly localized around the singularity developswith

from any initial perturbation at a rate which depends on the

characteristic gradient of the electron velocities. The polarity _ Pa .

of the magnetic field is opposite on the two sides of the Va_(1+—p§)1/2y Ja= —NaVa,
singularity. A similar structure is also found to occur for

two-dimensional perturbations which develop a localizedwhere all the quantities are normalized on a characteristic

chain of oppositely polarized magnetic domains. The characgensity n, on the speed of light, and on the plasma fre-
teristic _spaual scale of the field produced by Fhese local'z.e(auencyw_z(47-rmazlm)l’2. Notice that Eq.(5) is equivalent
instabilities is of the order of the electron skin depth. Th|s,[0 a linear combination of Eq$2) and (4)
can be understood by noting that this scale corresponds to '
the value of the wave numbé&rfor which the linear growth
rate becomes largest and almost independehkt of

This paper is organized as follows. In Sec. Il, we intro- We can study the behavior of infinitesimal perturbations
duce the coldrelativistic) two-electron-fluid equations and by linearizing the system of Eq$1)—(4). We consider a
present the main features of the Weibel instability in a ho-homogeneous plasma with velocitieg, such that the net
mogeneous plasma by considering perturbations forming acurrent density is zero,
arbitrary angle with the stream direction. In Sec. Il we study
the “resonant” behavior of the perturbation which arises in a
plasma with nonuniform equilibrium electron velocities. As
an illustration, we derive the spatial behavior around the
resonant position of perturbations with given growth rate.As initially the plasma is nonmagnetized, the direction of the
For the sake of simplicity we consider perturbations thatelectron streams, parallel to tlxeaxis of a Cartesian refer-
propagate perpendicularly to the two counterstreaming norence frame, is the only preferential direction. Without loss of
uniform electron streams and assume that these streams ayenerality, the evolution of any perturbation with wave vec-
symmetric and have nonrelativistic velocities. In addition,tor k can therefore be studied in ar,y) plane chosen so
we take the plasma density to be homogeneous. In Sec. I¥hat the wave vectdk=(k,,k,) lies in the plane itself. As is
we consider an initial value problem and study the time evoknown, the Weibel instability generates a magnetic figd
lution of an initially given perturbation. We follow the perpendicular to the planexfy). Then, assuming all per-
growth of the perturbation amplitude, its localization, and theturbed quantities in the form
formation of increasingly small spatial scales numerically,
both for nonrelativistic and for relativistic electron streams. F(x,y,t)="fe'xtky-ot) (8)
We analyze the case of one-dimensional as well as two-
dimensional2D) perturbations. In the latter case 2D vortices and definingQ,= w—Kkoa andl',=(1—-0v5,) "2 the dis-
are formed in the current density accompanied by fine spatigdersion relation reads
structures in the density of the two electron beams. A brief
discussion of the code used for the numerical simulations is (1—02_2)[kf(1+9;2)—wz(l—sz)—ZwkaS‘Z]
given in the Appendix.

a=1.2 (6)

A. Homogeneous plasma

g Noavoa=0. @)

+K[(1-075)(1+0,5)+05%=0, 9
Il. THE WEIBEL INSTABILITY where
Assuming the ions to be at rest and to provide a uniform
neutralizing background, we study the relativistic dynamics 0-2= Noa 0-2= Noa 10
of the two electron counterstreaming populations in the fluid ! Ea: r,0a 2 za: oz’ (10
approximation by means of the following set (@imension-
les9 equations: 02 Noaloa 02 nO,aUS,a
JPa 3 a I‘aQa ' 4 a I‘aQa .
WZ—Va'Vpa—(EJFVaXB), (1) )
Notice that, because of E¢r),
%=V~ja, @ KA1+ Q,9) - 0?(1-Q; )20k 05?2
Noa
=k2—w?+ D, =, 11
JB @ Ea: Iy Y
E =-VX E, (3)
When the perturbation propagates parallel to the mean elec-
JE tron streams, i.ek,=0, the electrostatic two-stream insta-
s =VXB-— E ias 4) bility amplifies the perturbed electric fiel, with a growth
a

rate obtained by solving the equatior—rﬂz’zzo. No mag-
netic field is produced in this case. In the opposite limit,
V.E=— n,, (5) k,=0, the dispersion relation reduces (see[14], and ref-

a erences therejn
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FIG. 1. Growth rate of the 1D Weibel instability versus the
wave numbek, for a homogeneous plasma. Curves 1(2@htinu-

ous lines refer to three nonrelativistic symmetric cases - -
(Vo1=—v0,=vo) With stream velocitiesr,=0.1,0.2,0.5. Curves verse e.m. and longitudinal Langmuir plasma wavksg and

456 refer to three relativisic symmetric cases with Small dashed lines, respectiviliThe new mode of the 2D disper-

v,=0.9,0.99,0.999. The stars are the growth rates of the Weibetion relation is shown by dotted lines and the stable continuation of

instability in an inhomogeneous plasrtgee Sec. Iy for five dif-  the 2D instability by a dotted-dashed lifzames (B), (C), (D)].

ferent wave numbers,=0.01,0.2,1,2,5. In this figure and in the The first two framesA) and (B) belong to a nonrelativistic sym-

following ones dimensionless units are used. metric casep,=0.1 and the last twdC) and (D) to a relativistic
symmetric casey,=0.95.

FIG. 2. Growth rate of the 2D instabiliticontinuous linesver-
susk,/k, in a homogeneous plasma and frequencies of the trans-

2 -2 -2
@ (1=, (10,9 a cutoff k™ beyond which the mode is stabilized. This
—K[(1-07)(1+0Q;5)+05%1=0. (12  cutoff depends on the stream velocity and, in 2D, on the

modulus of the wave vectokf+kZ)*2 as shown in Fig. 2

Equation (12) contains two oscillatory solutions and one by the continuous lines which represent the growth rate of
purely growing electromagnetic instabilitgD Weibel insta-  the 2D instability versus the anglg/k, . In this figure the
bility) which amplifies any initial small magnetic perturba- first two frames(A) and(B) belong to a nonrelativistic sym-
tion. metric case g 1= —vo=0.1), while the last twaC) and

In Fig. 1 (continuous lineswe plot the growth rate of the (D) belong to a relativistic symmetric case
1D Weibel instability versus the wave numbey for three  (vq,=—v(,=0.95); here Eq(9) is solved on a circle of
symmetric nonrelativistic cases {;= —vo,=0.1, 0.2, 0.5, fixed radiusk?+ k§= const. The cutoff of the coupled “Wei-
continuous linesand for three symmetric relativistic cases bel two-stream mode” is seen in all frames apart from the
(vo1=—v0.=0.9, 0.99, 0.999, dashed linesThe stars case of low stream velocity and small values of the modulus
represent the growth rates of the “localized mode” for aof the wave vectofframe (A)]. Note that in the relativistic
plasma with inhomogeneous electron stredsee Sec. IY.  regime this cutoff occurs at lower values kyf than in the
This figure shows that, in the nonrelativistic regifeentinu-  nonrelativistic case. In Fig. 2 we also show the three stable
ous lineg, the growth rate increases linearly wily for  branches of Eq9) corresponding to transvergelectromag-
small values ok, and saturates &,=1. In the relativistic  netic (e.m)] and longitudinalLangmuij plasma waves.
limit (dashed linesthe slope of the curves is more and more
reduced and, most important, saturation occurs at lower and 1. NONHOMOGENEOUS PLASMA
lower valuedi.e., k,~ (") ~*?], as consistent with the rela-
tivistic increase of the effective electron skin depth. For the In order to model the conditions where the electron
same reason, the value of the maximum growth rate is alsétreams are excited in the central region of the plasma, we
reduced in the strong relativistic caairve 6. assume that the inhomogeneity can be described as one di-

The saturation of the Weibel instability with respect to themensional along thg axis and write
wave numbek, has important implications for the analysis

of the time evolution of the instability in an inhomogeneous Pa=(Poat Pax:Pay.0), Na=Ngatn,, (13
equilibrium that will be presented in the following sections.
In the inhomogeneous case the spatial scale of the perturba- E=(E«.,Ey,0), B=(0,08,), 14

tions is formed dynamically and we may thus expect that the
inhomogeneous growth rate will not increase significantlywherepg,(y) andng,(y) are zero ordefequilibrium) quan-
after the perturbation has reached a typical scale correspontities such that, in agreement with E(), the total current
ing, in the nonrelativistic case, to=1. Zajo0a(y)=0. For the sake of simplicity, in this section we
In the 2D case with intermediate propagation angles, i.eassume equal and homogeneous mean electron density dis-
for nonvanishing values of boty andk, , the Weibel insta- tributions
bility and the two-stream instability are coupled in a single
branch. As is well known, the 1D two-stream instability has No1=No>=1, voiY)=—voAY). (15
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In this symmetric limit they component of the electric field 107 — -
vanishes. s (1) ky = 0.01, y=0.46
(2) ky = 0.2, y=0.47
06 (3 k=10, =049
(4) ko = 2.0, y=0.49

A. Local analysis (5) ko = 5.0,

The occurrence of a singularity in the spatial structure of 0-8

the Weibel instability in the case of inhomogeneous stream o
velocities is best seen by taking at first one-dimensional per-

turbations with given growth ratg=—iw of the form
Fly,nH=f(y)e". (16) 10772
Then, the linearized system of Eq4)—(4) in the nonrela- »
tivistic limit can be cast in a second order differential equa- ~ "* e " e
tion for the inductive electric fielde, which, e.g., in the Time

nonrelativistic limit, reads FIG. 3. Mean amplitude of the magnetic figlB,) versus time

9 9 with v,,=0.25 and6=0.25 for five different values of the initial
Fy [2v3(y) — ¥?] V= Y2(y*+2)E,=0, (17)  wave numberk,=0.01,0.2,1,2,5. All these curves refer to 1D non-
y y relativistic inhomogeneous simulations.

wherevg(y)=vo(Y). If ¥<7¥max, Whereyya is the maxi-

mum growth rate computed for a uniform plasma with the i=0 at v= L 21)
largest value ofvy(y), the coefficient of the second order ay y==%y:

derivative vanishes for purely growing modes and a local

Frobenius analysigl5] of Eq. (17) shows that the solution is The numerical initial value code is described in the Ap-

singular at the poiny where z;O(WZZ y2. In the neighbor- pendix; it has been optimized for massively parallel comput-
hood ofy we find ers and runs presently on the Connection Machine 200 of the

Scuola Normale of Pisa and on the Connection Machine 5 of
the Institut de Physique du Globe of Paris.

Ex=Inly—yl, (18 At the timet=0 with v,,=0.25 and5=0.25 [see Eq.
which leads to (20)], we perturb the equilibrium fields with a very small
disturbance on each of the physical quantities. The initial
B,~(y—y) L (199  perturbations are of the fornf;(y,t=0)=10 exd—y%

alsin(key+ ¢;), where ¢; is a random phase angd=801.
The logarithmic singularity irE, is mathematically analo- These perturbations decay rapidly fgt> 912 well outside
gous to the one which is encountered at the Alfvesonance the inhomogeneous region. We define the mean amplitude of
in the case of shear-Alfvewaves propagating in a weakly the perturbation as
inhomogeneous plasniaee, e.g., Ref$16,17] and, for gen-
eral oscillations in inhomogeneous floydd]). The singular-
ity in the spatial dependence &, indicates that the mag- ()=
netic field generated by the Weibel instability in a
nonuniform plasma is strongly inhomogeneous, and that itis \ye nave performed a number of simulations for different
localized in the neighborhood of the resonant point. Around,5jues of the wave vector of the initial perturbation

this point the field reverses its polarity, which corresponds tq) 1< ke<5 and of the inhomogeneity scale length
the formation of a current sheet. 0.1<1<10.

112
(22)

1 [y
— | " f(y,t)? d
2Lnyy (y,0)* dy

It is worth stressing thdt,=1 corresponds approximately
IV. TIME EVOLVING SIMULATIONS to the typical spatial scale for which the growth rate of the

We investigate the occurrence, the location, and the evdEorresponding homqgeneousl mode wuiigy = max(z;.o,l(y)h)_
lution of “resonant” modes by numerical integration of the Saturates at its maximum valdsee Fig. 1. We define this

normalized two-electron-fluid equatioi®)—(4). We model ~ Scale ‘?‘Skgg':ﬂ : _ o
the inhomogeneous equilibrium electron velocity as In Fig. 3 we plot the mean amplitude of the magnetic field
for different values ofk, (6=0.25, I=1, andv.=0.25)
1) and in Fig. 4 we show the spatial behavior of the magnetic
Voa(y)=ve+ s[1+tanty/l)]e, field for ko=0.2 at different times. Nonlinear effects start
coming into play att=50. In Fig. 5 we plot the magnetic
Vo= —Vo1, (20) field versusy for the same run of Fig. 4 at timte=0 (dashed

line) and overplot the magnetic field at later times every
where 1J is the dimensionless equilibrium gradient param-At=0.5 (continuous lines Each curve is normalized to its
eter. Thenpg (y——*)=v., voiy—+*)=v.+4, and maximum absolute value.
we integrate Egs. (1)—(4) in the interval For “small” initial wave numbersk,<1, the most inter-
y=[—-Ly,Ly], L,/1=70, with the following boundary con- esting result is the dynamical formation of a strong peak of
ditions for all the variables: the magnetic field, in the central inhomogeneous region
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FIG. 4. Dependence of the magnetic fi8d ony in a nonrel- FIG. 6. Dependence of the magnetic fi@dd ony in a relativ-

ativistic case(corresponding to curve 2 of Fig) at different times, istic 1D case at different time$=0,5,7,35. The values of the pa-
t=0,7,25,40. The values of the parameters are:rameters ar&,=0.2, §=0.25, v..=0.749.

ko=0.2, v,,=0.25, §=0.25. .- . . -
0 v finite rate. This result is not surprising because of the lack of

neary=0 where the equilibrium gradients are maximum @ Physical dissipation mechanism in the adopted equations;
(see Fig. 4 This process develops on a characterigtic =~ MOr€over, the numerical dissipation of our numerical scheme
mensionlesstime t,~5 which depends on the value of the is negligible until the typical spatial scale of the perturbation

inhomogeneity scale length while it is independent of the P€comes comparable with the grid spacing. This is far from
particular choice ofk,. This characteristic time is much P€ing the case in our simulations.

shorter than the inverse of the growth rate corresponding to FOF larger values of the wave numbet,€1) our nu-
the initial wave number of the perturbation. merical results show that the small scale formation process is
Eventually the typical scale length of the perturbation be_less evident since the spatial scale of the initial perturbation
comes of0(1) (i.e., k~kM™™ and the small scale formation is of the same order or even smaller than the scale which is
) sat

. : eached by the resonance during the initial “fast” process
process rapidly slows down. Then the mean amphtudé hom .
(B,)(t) grows according to a time dependence that is veryti = tp) Observed wheo<1. Thus, wherk=ks,’, the sin-

sat
close to an exponential onésee Fig. 3 The estimated gularity does not play a significant role in this linear phase
growth rate y [obtained by an exponential best fit o

f and the mode evolves more or less as in the homogeneous
(B,(1)),t>1,] is independent ok,, as shown in Fig. 1

(stars. The resulting “resonant” mode does not propagate The scald of mean gradient pf _the_ electron streams, see
significantly, as shown in Fig. 5, so that we can assume th&{.th. (20), controls the characteristic time of the fast initial

the frequency of the mode is small or zero. The peak Ognjzgllzgcale fo:jmation. ';OF 2-@3ko<?-§,ole=10-2156 ?I'?ld
B,(y,t) is located near the point Where)?— y?*=0, as ex- =0.25 we made a number of runs wits 0.1, 1, - 'he

pecte rom he ol analys of E7 sl of hese Siulons can be Sunmaied s folows.
After the initial rapid generation of the peaf,(~5), the 9

small scale formation process slows down, but continues at rocesydepends Oq,g_he initial inhomogeneity of the elec_:trc_)n
streams as,incp=tol 75 on the other hand, the characteristic

spatial scale reached by the systm,kggf“, is independent

i ] of | and, as observed for a fixed value of the inhomogeneity
1ol ] scale (=1), independent ok,. Similar results on the for-

L ] mation and structure of the resonant modes have been ob-
tained for nonsymmetric electron streams.

In order to study the resonant Weibel instability in the
relativistic regime, we have performed a number of runs
which show the same qualitative behavior observed in the
nonrelativistic regime. In Fig. 6, as an example, we show the
formation of the resonance by plotting the magnetic field
versusy at different times. The parameters used in this run
7 ] are kg=0.2, v,.=0.749, §=0.25, and the growth rate is
-1.5L 1 1 I I I ] ’y=065

o e s y ° ° ® The formation of a Weibel resonance is also evident for
2D modes which lead to the formation of a chain of oppo-

FIG. 5. Evolution of the dependence of the magnetic figjon  Sitely polarized magnetic domains and to current density vor-
y in the same case as in Fig. 4 fror¥0 to t=50 showing the tices. This is shown in FIgS 7-9. In Flg 7 we show the
absence of propagation. The dashed line corresponds to the initighaded contours of the magnetic field at four times,
conditionB,(t=0). Each curve is normalized to its maximum ab- t=0,7,25,40. Whiter and darker regions correspond to larger
solute value. values of the magnetic field with opposite polarity; in the
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FIG. 7. Shaded contours of the magnetic fi@fg for the 2D FIG. 9. Enlarged representation of the contours of the magnetic
instability in a plasma with inhomogeneous nonrelativistic symmet-field B, at t=25 with the same colors as in Fig. 7. The arrows
ric electron streams at four times=0,15,25,27. The values of the represent the direction of the electron current density.
parameters ar&k,=k,=1, ky=0.2, §=0.25, v.,,=0.25. Darker
regions correspond to increasingly positive values and whiter reeurrent density. The current vortices dt=25 are shown in

gions to increasingly negative values of the magnetic field. In theFig. 9 (white arrows together with the shaded contour mag-
first frame white lines are the contour lines of the initial inhomoge-netic field (same colors of Fig. )7
neous velocity stream.

. . . . L V. CONCLUSIONS
first frame, white lines are the contour lines of the initial

inhomogeneous velocitysee Eq.(20)]. Notice that they We have performed a linear analysis of the 1D and 2D
interval in this figureland in Figs. 8 and)ds much narrower Spatial structure and time evolution of the Weibel instability
than in the 1D simulations, Figs. 4—6. In Fig. 7 we note thatn @ plasma with nonuniform counterstreaming electron
the characteristiy length of the magnetic field generated by streams. We have found, both analytically and numerically,
the pinching process in the inhomogeneous region is of théhat this instability develops a resonance-type spatial struc-
same order of that observed in 1D simulations. In Fig. 8 weure and that the generated magnetic field is highly localized
show the shaded contours @) E, and (B) E, and of the and reverses its polarity at the resonant position. We haye
densities of the two electron populations, frart@sand(D), shown that the.resonance occurs roug_hly_around the point
att=27. It is worth noticing that in Fig. 8 the densities of the Where the gradient of the stream velocity is largest. In the
two electron streams form narrow spatial structyféamen- ~ case of 1D perturbations, a current layer is formed very rap-
tation) but, at this stage, their velocities do not develop vor-idly at the resonance position, almost independently of the
tices that are on|y seen in their We|ghted S(jm., in the characteristic scale of the initial perturbation. In 2D a chain
of current vortices is formed. The spatial scale of the mag-
netic field continues to decrease until nonlinear effects
and/or three-dimensional effects leading to magnetic line re-
connection induced by electron inertjd9], both not in-
cluded in the present analysis, become dominant. Magnetic
reconnection can be expected to play an important role in the
evolution of theX points that are produced by the 2D insta-
bility. A vivid example of a magneticX point is indeed
shown in Fig. 9.

(4)
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APPENDIX
FIG. 8. Shaded contours &t 27 of the electric field compo-

nentsE, and E, [frames (A) and (B)] and of the two electron The numerical code directly integrates Eq®)—(4). It
densitiesn; andn, [frames(C) and(D)]. Parameters are the same advances in time with the explicit algorithADAMS BASH-
as in Fig. 7. FORD Il with fixed time stepst and an accuracy- O(6t°).
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DefiningR}", 1=1,...,4 theright hand side of each of s s

the equations(1)—(4) at the timen and assuming that Y(S):;—a' tanl‘(E>. (A3)
R', R'"!, R'2 are known, the algorithm calculates the
fields at the new time as follows:
On the numerical equispaced mesthe derivatives are cal-
culated using compact finite differenceee[20], and refer-
ences thereinthe computational cost of which is larger than
that of classical finite differences; but these differences allow

H,=p,, H,=n,, Hz=E, H,=B,. (A2) one to obtain an accurate resolution of a wide range of spa-

) o ) o tial scales(not far from spectral methogsvhile keeping the

To calculate the spatial derivatives, in thelirection we fexipility of all finite difference methods for nonperiodic

use fast Fourier transforms with periodic boundary condisityations. In our code, we use the eighth order pentadiagonal
tions. In the inhomogeneoysdirection we use a rather dif- scheme with an accuracy

ferent technique described as follows. First of all, it is of

particular importance that during the simulation the bound-

ary conditions do not influence significantly the evolution of 16 d°f

the instability, and that the inhomogeneous regiby)<€5) €= adsgdﬁg?' (Ad)
where strong gradients are generated must be “well re-

solved.” Therefore we make use of a nonregujalnysica)

grid on an interval much larger than all the characteristicNear the boundaries, at the poirits2 andi=N-1, the
lengths of the system with an increasing density of gridscheme is reduced to a tridiagonal one, always on an equis-
points in the central region. The physical nonuniforrnesh  paced centered mesh, with an accuracyds®. At the

is transformed into an equispaced numerigahesh accord- boundaries in the points=1N we directly introduce the

23 4
HM*t=H]+ 6t BRI R+

3 n-2 (Al)

R )

ing to boundary conditions, Eq21).
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